\(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^{5/2} (f+g x)^4} \, dx\) [708]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 46, antiderivative size = 253 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^4} \, dx=-\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^3 \sqrt {d+e x} (f+g x)}-\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2} (f+g x)^2}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2} (f+g x)^3}+\frac {5 c^3 d^3 \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{8 g^{7/2} \sqrt {c d f-a e g}} \]

[Out]

-5/12*c*d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/g^2/(e*x+d)^(3/2)/(g*x+f)^2-1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e
*x^2)^(5/2)/g/(e*x+d)^(5/2)/(g*x+f)^3+5/8*c^3*d^3*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e
*g+c*d*f)^(1/2)/(e*x+d)^(1/2))/g^(7/2)/(-a*e*g+c*d*f)^(1/2)-5/8*c^2*d^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2
)/g^3/(g*x+f)/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {876, 888, 211} \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^4} \, dx=\frac {5 c^3 d^3 \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{8 g^{7/2} \sqrt {c d f-a e g}}-\frac {5 c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 g^3 \sqrt {d+e x} (f+g x)}-\frac {5 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2} (f+g x)^2}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2} (f+g x)^3} \]

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/((d + e*x)^(5/2)*(f + g*x)^4),x]

[Out]

(-5*c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(8*g^3*Sqrt[d + e*x]*(f + g*x)) - (5*c*d*(a*d*e + (c*
d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(12*g^2*(d + e*x)^(3/2)*(f + g*x)^2) - (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x
^2)^(5/2)/(3*g*(d + e*x)^(5/2)*(f + g*x)^3) + (5*c^3*d^3*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*
e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(8*g^(7/2)*Sqrt[c*d*f - a*e*g])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 876

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(d + e*x)^m*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^p/(g*(n + 1))), x] + Dist[c*(m/(e*g*(n + 1))), Int[(d +
e*x)^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f
 - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && GtQ[p,
 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])

Rule 888

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2} (f+g x)^3}+\frac {(5 c d) \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx}{6 g} \\ & = -\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2} (f+g x)^2}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2} (f+g x)^3}+\frac {\left (5 c^2 d^2\right ) \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^2} \, dx}{8 g^2} \\ & = -\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^3 \sqrt {d+e x} (f+g x)}-\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2} (f+g x)^2}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2} (f+g x)^3}+\frac {\left (5 c^3 d^3\right ) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{16 g^3} \\ & = -\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^3 \sqrt {d+e x} (f+g x)}-\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2} (f+g x)^2}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2} (f+g x)^3}+\frac {\left (5 c^3 d^3 e^2\right ) \text {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{8 g^3} \\ & = -\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^3 \sqrt {d+e x} (f+g x)}-\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2} (f+g x)^2}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2} (f+g x)^3}+\frac {5 c^3 d^3 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{8 g^{7/2} \sqrt {c d f-a e g}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.78 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.68 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^4} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \left (-\frac {\sqrt {g} \left (8 a^2 e^2 g^2+2 a c d e g (5 f+13 g x)+c^2 d^2 \left (15 f^2+40 f g x+33 g^2 x^2\right )\right )}{(f+g x)^3}+\frac {15 c^3 d^3 \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )}{\sqrt {c d f-a e g} \sqrt {a e+c d x}}\right )}{24 g^{7/2} \sqrt {d+e x}} \]

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/((d + e*x)^(5/2)*(f + g*x)^4),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(-((Sqrt[g]*(8*a^2*e^2*g^2 + 2*a*c*d*e*g*(5*f + 13*g*x) + c^2*d^2*(15*f^2 + 40*
f*g*x + 33*g^2*x^2)))/(f + g*x)^3) + (15*c^3*d^3*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - a*e*g]])/(Sqr
t[c*d*f - a*e*g]*Sqrt[a*e + c*d*x])))/(24*g^(7/2)*Sqrt[d + e*x])

Maple [A] (verified)

Time = 0.56 (sec) , antiderivative size = 431, normalized size of antiderivative = 1.70

method result size
default \(-\frac {\sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (15 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{3} d^{3} g^{3} x^{3}+45 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{3} d^{3} f \,g^{2} x^{2}+45 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{3} d^{3} f^{2} g x +15 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{3} d^{3} f^{3}+33 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c^{2} d^{2} g^{2} x^{2}+26 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a c d e \,g^{2} x +40 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c^{2} d^{2} f g x +8 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a^{2} e^{2} g^{2}+10 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a c d e f g +15 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c^{2} d^{2} f^{2}\right )}{24 \sqrt {e x +d}\, \sqrt {c d x +a e}\, g^{3} \left (g x +f \right )^{3} \sqrt {\left (a e g -c d f \right ) g}}\) \(431\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^4,x,method=_RETURNVERBOSE)

[Out]

-1/24*((c*d*x+a*e)*(e*x+d))^(1/2)*(15*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^3*d^3*g^3*x^3+45*
arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^3*d^3*f*g^2*x^2+45*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-
c*d*f)*g)^(1/2))*c^3*d^3*f^2*g*x+15*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^3*d^3*f^3+33*(c*d*x
+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*c^2*d^2*g^2*x^2+26*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a*c*d*e*g^2*x
+40*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*c^2*d^2*f*g*x+8*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a^2*e^
2*g^2+10*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a*c*d*e*f*g+15*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*c^
2*d^2*f^2)/(e*x+d)^(1/2)/(c*d*x+a*e)^(1/2)/g^3/(g*x+f)^3/((a*e*g-c*d*f)*g)^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 549 vs. \(2 (221) = 442\).

Time = 0.82 (sec) , antiderivative size = 1140, normalized size of antiderivative = 4.51 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^4} \, dx=\left [-\frac {15 \, {\left (c^{3} d^{3} e g^{3} x^{4} + c^{3} d^{4} f^{3} + {\left (3 \, c^{3} d^{3} e f g^{2} + c^{3} d^{4} g^{3}\right )} x^{3} + 3 \, {\left (c^{3} d^{3} e f^{2} g + c^{3} d^{4} f g^{2}\right )} x^{2} + {\left (c^{3} d^{3} e f^{3} + 3 \, c^{3} d^{4} f^{2} g\right )} x\right )} \sqrt {-c d f g + a e g^{2}} \log \left (-\frac {c d e g x^{2} - c d^{2} f + 2 \, a d e g - {\left (c d e f - {\left (c d^{2} + 2 \, a e^{2}\right )} g\right )} x - 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {-c d f g + a e g^{2}} \sqrt {e x + d}}{e g x^{2} + d f + {\left (e f + d g\right )} x}\right ) + 2 \, {\left (15 \, c^{3} d^{3} f^{3} g - 5 \, a c^{2} d^{2} e f^{2} g^{2} - 2 \, a^{2} c d e^{2} f g^{3} - 8 \, a^{3} e^{3} g^{4} + 33 \, {\left (c^{3} d^{3} f g^{3} - a c^{2} d^{2} e g^{4}\right )} x^{2} + 2 \, {\left (20 \, c^{3} d^{3} f^{2} g^{2} - 7 \, a c^{2} d^{2} e f g^{3} - 13 \, a^{2} c d e^{2} g^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{48 \, {\left (c d^{2} f^{4} g^{4} - a d e f^{3} g^{5} + {\left (c d e f g^{7} - a e^{2} g^{8}\right )} x^{4} + {\left (3 \, c d e f^{2} g^{6} - a d e g^{8} + {\left (c d^{2} - 3 \, a e^{2}\right )} f g^{7}\right )} x^{3} + 3 \, {\left (c d e f^{3} g^{5} - a d e f g^{7} + {\left (c d^{2} - a e^{2}\right )} f^{2} g^{6}\right )} x^{2} + {\left (c d e f^{4} g^{4} - 3 \, a d e f^{2} g^{6} + {\left (3 \, c d^{2} - a e^{2}\right )} f^{3} g^{5}\right )} x\right )}}, -\frac {15 \, {\left (c^{3} d^{3} e g^{3} x^{4} + c^{3} d^{4} f^{3} + {\left (3 \, c^{3} d^{3} e f g^{2} + c^{3} d^{4} g^{3}\right )} x^{3} + 3 \, {\left (c^{3} d^{3} e f^{2} g + c^{3} d^{4} f g^{2}\right )} x^{2} + {\left (c^{3} d^{3} e f^{3} + 3 \, c^{3} d^{4} f^{2} g\right )} x\right )} \sqrt {c d f g - a e g^{2}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {c d f g - a e g^{2}} \sqrt {e x + d}}{c d e g x^{2} + a d e g + {\left (c d^{2} + a e^{2}\right )} g x}\right ) + {\left (15 \, c^{3} d^{3} f^{3} g - 5 \, a c^{2} d^{2} e f^{2} g^{2} - 2 \, a^{2} c d e^{2} f g^{3} - 8 \, a^{3} e^{3} g^{4} + 33 \, {\left (c^{3} d^{3} f g^{3} - a c^{2} d^{2} e g^{4}\right )} x^{2} + 2 \, {\left (20 \, c^{3} d^{3} f^{2} g^{2} - 7 \, a c^{2} d^{2} e f g^{3} - 13 \, a^{2} c d e^{2} g^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{24 \, {\left (c d^{2} f^{4} g^{4} - a d e f^{3} g^{5} + {\left (c d e f g^{7} - a e^{2} g^{8}\right )} x^{4} + {\left (3 \, c d e f^{2} g^{6} - a d e g^{8} + {\left (c d^{2} - 3 \, a e^{2}\right )} f g^{7}\right )} x^{3} + 3 \, {\left (c d e f^{3} g^{5} - a d e f g^{7} + {\left (c d^{2} - a e^{2}\right )} f^{2} g^{6}\right )} x^{2} + {\left (c d e f^{4} g^{4} - 3 \, a d e f^{2} g^{6} + {\left (3 \, c d^{2} - a e^{2}\right )} f^{3} g^{5}\right )} x\right )}}\right ] \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^4,x, algorithm="fricas")

[Out]

[-1/48*(15*(c^3*d^3*e*g^3*x^4 + c^3*d^4*f^3 + (3*c^3*d^3*e*f*g^2 + c^3*d^4*g^3)*x^3 + 3*(c^3*d^3*e*f^2*g + c^3
*d^4*f*g^2)*x^2 + (c^3*d^3*e*f^3 + 3*c^3*d^4*f^2*g)*x)*sqrt(-c*d*f*g + a*e*g^2)*log(-(c*d*e*g*x^2 - c*d^2*f +
2*a*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*f*g +
a*e*g^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + (e*f + d*g)*x)) + 2*(15*c^3*d^3*f^3*g - 5*a*c^2*d^2*e*f^2*g^2 - 2*a^2
*c*d*e^2*f*g^3 - 8*a^3*e^3*g^4 + 33*(c^3*d^3*f*g^3 - a*c^2*d^2*e*g^4)*x^2 + 2*(20*c^3*d^3*f^2*g^2 - 7*a*c^2*d^
2*e*f*g^3 - 13*a^2*c*d*e^2*g^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c*d^2*f^4*g^4 -
 a*d*e*f^3*g^5 + (c*d*e*f*g^7 - a*e^2*g^8)*x^4 + (3*c*d*e*f^2*g^6 - a*d*e*g^8 + (c*d^2 - 3*a*e^2)*f*g^7)*x^3 +
 3*(c*d*e*f^3*g^5 - a*d*e*f*g^7 + (c*d^2 - a*e^2)*f^2*g^6)*x^2 + (c*d*e*f^4*g^4 - 3*a*d*e*f^2*g^6 + (3*c*d^2 -
 a*e^2)*f^3*g^5)*x), -1/24*(15*(c^3*d^3*e*g^3*x^4 + c^3*d^4*f^3 + (3*c^3*d^3*e*f*g^2 + c^3*d^4*g^3)*x^3 + 3*(c
^3*d^3*e*f^2*g + c^3*d^4*f*g^2)*x^2 + (c^3*d^3*e*f^3 + 3*c^3*d^4*f^2*g)*x)*sqrt(c*d*f*g - a*e*g^2)*arctan(sqrt
(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d*f*g - a*e*g^2)*sqrt(e*x + d)/(c*d*e*g*x^2 + a*d*e*g + (c*d^2
+ a*e^2)*g*x)) + (15*c^3*d^3*f^3*g - 5*a*c^2*d^2*e*f^2*g^2 - 2*a^2*c*d*e^2*f*g^3 - 8*a^3*e^3*g^4 + 33*(c^3*d^3
*f*g^3 - a*c^2*d^2*e*g^4)*x^2 + 2*(20*c^3*d^3*f^2*g^2 - 7*a*c^2*d^2*e*f*g^3 - 13*a^2*c*d*e^2*g^4)*x)*sqrt(c*d*
e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c*d^2*f^4*g^4 - a*d*e*f^3*g^5 + (c*d*e*f*g^7 - a*e^2*g^8)*x
^4 + (3*c*d*e*f^2*g^6 - a*d*e*g^8 + (c*d^2 - 3*a*e^2)*f*g^7)*x^3 + 3*(c*d*e*f^3*g^5 - a*d*e*f*g^7 + (c*d^2 - a
*e^2)*f^2*g^6)*x^2 + (c*d*e*f^4*g^4 - 3*a*d*e*f^2*g^6 + (3*c*d^2 - a*e^2)*f^3*g^5)*x)]

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^4} \, dx=\text {Timed out} \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(5/2)/(g*x+f)**4,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^4} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {5}{2}}}{{\left (e x + d\right )}^{\frac {5}{2}} {\left (g x + f\right )}^{4}} \,d x } \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^4,x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)/((e*x + d)^(5/2)*(g*x + f)^4), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 940 vs. \(2 (221) = 442\).

Time = 0.71 (sec) , antiderivative size = 940, normalized size of antiderivative = 3.72 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^4} \, dx=\frac {5 \, c^{3} d^{3} {\left | e \right |} \arctan \left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right )}{8 \, \sqrt {c d f g - a e g^{2}} e g^{3}} - \frac {15 \, c^{3} d^{3} e^{3} f^{3} {\left | e \right |} \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right ) - 45 \, c^{3} d^{4} e^{2} f^{2} g {\left | e \right |} \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right ) + 45 \, c^{3} d^{5} e f g^{2} {\left | e \right |} \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right ) - 15 \, c^{3} d^{6} g^{3} {\left | e \right |} \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right ) - 15 \, \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d f g - a e g^{2}} c^{2} d^{2} e^{2} f^{2} {\left | e \right |} + 40 \, \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d f g - a e g^{2}} c^{2} d^{3} e f g {\left | e \right |} - 10 \, \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d f g - a e g^{2}} a c d e^{3} f g {\left | e \right |} - 33 \, \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d f g - a e g^{2}} c^{2} d^{4} g^{2} {\left | e \right |} + 26 \, \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d f g - a e g^{2}} a c d^{2} e^{2} g^{2} {\left | e \right |} - 8 \, \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d f g - a e g^{2}} a^{2} e^{4} g^{2} {\left | e \right |}}{24 \, {\left (\sqrt {c d f g - a e g^{2}} e^{4} f^{3} g^{3} - 3 \, \sqrt {c d f g - a e g^{2}} d e^{3} f^{2} g^{4} + 3 \, \sqrt {c d f g - a e g^{2}} d^{2} e^{2} f g^{5} - \sqrt {c d f g - a e g^{2}} d^{3} e g^{6}\right )}} - \frac {15 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} c^{5} d^{5} e^{4} f^{2} {\left | e \right |} - 30 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} a c^{4} d^{4} e^{5} f g {\left | e \right |} + 15 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} a^{2} c^{3} d^{3} e^{6} g^{2} {\left | e \right |} + 40 \, {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} c^{4} d^{4} e^{2} f g {\left | e \right |} - 40 \, {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} a c^{3} d^{3} e^{3} g^{2} {\left | e \right |} + 33 \, {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {5}{2}} c^{3} d^{3} g^{2} {\left | e \right |}}{24 \, {\left (c d e^{2} f - a e^{3} g + {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )} g\right )}^{3} g^{3}} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^4,x, algorithm="giac")

[Out]

5/8*c^3*d^3*abs(e)*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e))/(sqrt(c*d*f*g
 - a*e*g^2)*e*g^3) - 1/24*(15*c^3*d^3*e^3*f^3*abs(e)*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*
e)) - 45*c^3*d^4*e^2*f^2*g*abs(e)*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) + 45*c^3*d^5*e*
f*g^2*abs(e)*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 15*c^3*d^6*g^3*abs(e)*arctan(sqrt(
-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 15*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^2*d^2*e
^2*f^2*abs(e) + 40*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^2*d^3*e*f*g*abs(e) - 10*sqrt(-c*d^2*e + a*
e^3)*sqrt(c*d*f*g - a*e*g^2)*a*c*d*e^3*f*g*abs(e) - 33*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^2*d^4*
g^2*abs(e) + 26*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a*c*d^2*e^2*g^2*abs(e) - 8*sqrt(-c*d^2*e + a*e^
3)*sqrt(c*d*f*g - a*e*g^2)*a^2*e^4*g^2*abs(e))/(sqrt(c*d*f*g - a*e*g^2)*e^4*f^3*g^3 - 3*sqrt(c*d*f*g - a*e*g^2
)*d*e^3*f^2*g^4 + 3*sqrt(c*d*f*g - a*e*g^2)*d^2*e^2*f*g^5 - sqrt(c*d*f*g - a*e*g^2)*d^3*e*g^6) - 1/24*(15*sqrt
((e*x + d)*c*d*e - c*d^2*e + a*e^3)*c^5*d^5*e^4*f^2*abs(e) - 30*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*a*c^4*
d^4*e^5*f*g*abs(e) + 15*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*a^2*c^3*d^3*e^6*g^2*abs(e) + 40*((e*x + d)*c*d
*e - c*d^2*e + a*e^3)^(3/2)*c^4*d^4*e^2*f*g*abs(e) - 40*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a*c^3*d^3*e^
3*g^2*abs(e) + 33*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(5/2)*c^3*d^3*g^2*abs(e))/((c*d*e^2*f - a*e^3*g + ((e*x
+ d)*c*d*e - c*d^2*e + a*e^3)*g)^3*g^3)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^4} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}}{{\left (f+g\,x\right )}^4\,{\left (d+e\,x\right )}^{5/2}} \,d x \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/((f + g*x)^4*(d + e*x)^(5/2)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/((f + g*x)^4*(d + e*x)^(5/2)), x)